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A theoretical and experimental study is made of the second-order resonant inter- 
action between triads of linearly damped waves, one common member of which 
is continuously forced. In  the case of a single triad, if the forced wave exceeds 
a critical amplitude defined by properties of the triad members, energy proceeds 
irreversibly to the other two waves. A stable limit state is reached where all 
power in excess of that required to sustain a critical amplitude in the forced wave 
is transferred to the other waves, which also reach steady terminal amplitudes. 

It is shown that when two or more triads are simultaneously at resonance the 
only stable limit state is one wherein the forced wave has fallen to the lowest 
critical amplitude, and the only other two waves remaining are those of the 
triad possessing this critical amplitude. Regardless of their initial amplitudes, 
all other waves not externally forced ultimately disappear. 

The theory is applied to the interaction of standing internal gravity waves in 
a linearly stratified liquid. The experiments described here quantitatively con- 
firm the major predictions. 

1. Introduction 
A recent paper (McEwan 1971, henceforth denoted by I) describes experiments 

to observe the degeneration of continuously forced standing internal gravity 
waves in a rectangular tank of stably stratified liquid. A single wave was forced 
a t  resonance by means of a paddle forming one end of the tank,$ and it was 
found that, after a period of time, if the wave was above a certain critical 
amplitude it suffered an irreversible distortion of form. 

It was shown that this degeneration process proceeds by the growth, from 
a subliminal level, of pairs of free wave modes forming triads in resonant second- 
order interaction with the original wave. These grow until they have substantially 
de-energized the original wave. Possible free modes between rectangular 
boundaries in two dimensions are doubly (countably) infinite in number, but 
the number of triads participating in resonant interaction for a given geometry 

t Present address : Department of Applied Mathematics, University of Edinburgh. 
$ In  fact all the odd harmonics as well as the fundamental wave were forced, but the 

former had insignificant amplitudes. 
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is singly infinite. If one of the modes is specijied, exactly resonant interaction is 
possible only for particular geometries and with a specific pair of triad partners, 
except in certain special cases. 

Theoretical predictions of the critical amplitude of the forced wave (below 
which degenerate modes could not be sustained) and its dependency on viscous 
dissipation were accurately confirmed by experiment, but supercritical be- 
haviour was not investigated quantitatively. 

Previous theoretical analyses of the phenomenon of resonant interaction be- 
tween waves? have been concerned mainly with non-dissipative systems, 
though McGoldrick (1965) gave appropriate solutions to the interaction equa- 
tions when linear attenuation terms are included. Davis & Acrivos (1967) also 
considered damping effects, and more recently the effects of viscosity have been 
examined by McGoldrick (1970) for a, case of second-harmonic resonance (be- 
tween a fundamental mode and its second harmonic) and by Craik (1971) in 
relation to a resonant instability mechanism in boundary layers. 

In $ 2  of this paper, we undertake an investigation of the equations for a 
resonantly interacting triad in which one wave is continuously forced and all 
three are damped. The theory can be generalized, but is developed here in the 
context of the experiments reported in I. The theory predicts the existence of 
equilibrium states in which each of the modes reaches a steady terminal ampli- 
tude. In  $3,  the behaviour of two interacting triads having a single forced mode 
in common is worked out. Stability of the equilibrium states is investigated in 
$4. In $ 5, examples and numerical integrations of the interaction equations are 
given and comments are made on the observations of I. In $ 6 further experiments 
which confirm the salient features of the analysis are described. 

2. Single-triad interaction 
The equations governing damped resonant interactions between triads of 

standing internal gravity waves with one wave forced at resonance are derived 
in an appendix. These equations have a general form, incorporating dissipation 
terms of the form f i s t  used by McGoldrick (1965), and variable phase angles as 
in equations (B 14) of Martin, Simmons & Wunsch (1972). We confine our 
attention here to a triad of standing waves (denoted by subscripts 1, 2 and 3), 
in which wave 1 is forced continuously at resonance and all three have a time 
dependence of the form aj(t)  cos (wj t  +a,(t)), with frequency wj, amplitude aj(t) 
(assumed non-negative) and phase a,(t), which is defined only if tti(t) is non-zero. 
If forcing and damping are weak and comparable in size with the nonlinearity 
in the system, the amplitudes and phases vary slowly with time, in the sense that 

and their evolution is determined by the six interaction equations 

K: dU,/dt = S1 a2 a3 cos 7 - TI a1 + P cos (y  - ixl), (2.1) 

f A list of references wae given by Phillips (1966) ; a lucid elementary introduction 
to the phenomenon was given by Ball (1964). 
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~ $ d a , f d t  = S,a,a,cosy-T,a,, (2.2) 

~ ! d a , / d t  = S,a,a,cosy-T3a3, (2.3) 
K; a, da,/dt = - 8, az a3 sin y + F sin (y - ar) , (2-4) 

~2,a,da,fdt = -S,a,a,siny, (2.5) 

Kza3da3/dt = -S3a,azsiny. (2.6) 

Here the interaction coefficients Sj and damping coefficients q are functions of 
wj and of the wavenumbers uj of the waves ( K ~  and w j  are assumed to satisfy the 
usual resonance conditions Xuj = 0, Xuj = 0). Also K~ = I uj I , 7 = a1 + a2 + a3, F is 
a constant forcing function which is assumed to be positive and y = y ( t )  is 
a function which allows for the possibility of a slow drift in the forcing relative 
to that of the forced wave.? The assumption that F is constant is based on 
linear theory, which predicts a uniform growth rate of any mode forced a t  
resonance. 

The forms of q appropriate to the experiments reported in I and those de- 
scribed in this paper are given in (5.1), and the Sj have the form 

sj = s w j  (2.7) 

[as was shown to be the case for general systems by Hasselmann (1966, equation 
(1.13))]. Here, with the aj expressed as stream-function amplitudes, the quantity 
S takes the form 

where m, and n, are the horizontal and vertical components of K ~ ,  C2 is the 
uniform Brunt-VaisLlL frequency of the liquid and r and s assume different 
integer values selected from 1 , 2  and 3. One can show by using the resonance con- 
ditions that S is independent of r and s and also that the Sj cannot all be of one 
sign. 

If y is a constant, (2.1)-(2.6) admit the following two steady-state solutions 
(denoted by a subscript s) : 

a,, = FIT,, a2, = a% = 0,l 
a,, = y, a,, a,undefined,f 

%S = (T2T3/S2S3)t, 

als = y ,  a,, = qn - y - a% arbitrary,) 

where q = 1 or 0 according as S,  
of (2.9) are 

(i) S2S3 > 0, implying that S3S, < 0, SIX, < 0, 

(ii) FIT, > als. 

0 and conditions necessary for the existence 

t In relation to  the experiments, see $6.  
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The solution (2.9) suggests the possibility of realizing steady,? finite amplitude 
equilibrium states in which energy is transferred from the forced mode to the 
free modes by resonant interaction and is simultaneously dissipated by all three 
modes. In  the situation represented by (2.8), no energy transfer occurs and the 
free modes are not present. Since PIT1 is the terminal amplitude of a non- 
interacting wave, condition (ii) above means that the forced mode has to be 
raised to an amplitude greater than the critical amplitude 

(2.10) 

for energy transfer between the waves to be maintained. A result which is at 
first sight surprising is that, for this supercritical state, the terminal level als 
of the forced mode is equal to a, and therefore independent of P; in other words, 
all excess energy is transferred to the free waves. 

From (2.7) and condition (i) it readily follows that w1 must be of opposite sign 
to w2 and w3. Moreover, since Cwi = 0, lull > max(IwzI, Iw31). That is, for the 
existence of a Jinite amplitude equilibrium state, the triad member with the highest 
absolute frequency must be forced. This triad member, as might be expected, is the 
one which is unstable in inviscid theory to growth of the other two members 
(Hasselmann 1967). Our numerical solutions suggest that if the forcing is applied 
only to either of the lower frequency members the interaction will de-energize 
the highest frequency member to force the other, and regardless of their initial 
amplitudes both will ultimately fall to zero leaving only the forced mode. 

Although conditions (i) and (ii) are sufficient for the existence of a solution of 
the type (2.9), evolution to this limiting state requires in addition that a2 and 
u3 are not simultaneously zero. In  that case interaction cannot occur, even if 
FIT, is supercritical, and the only equilibrium state to which the system may 
evolve is (2.8). However, we shall show that with supercritical forcing this 
equilibrium state is unstable. 

A shortcoming of our analysis is our inability as yet to rule out completely the 
possibility of periodic or other fluctuating solutions to (2.1)-(2.6). (Periodic 
solutions would correspond to limit cycles in a phase-space representation.) 
Nevertheless, we conjecture that the equilibrium states (2.8) and (2.9) represent 
stable solutions for subcritical and supercritical forcing respectively. In  fact, 
they appear to be the normal states to which the system evolves. The evolution 
toward a steady state in the experiments follows closely that predicted by the 
corresponding numerical solution of the interaction equations and, moreover, 
we have been unable to find quasi-steady states in uny numerical integrations 
of the equations. 

t The theory is strictly valid on a time scale T N l/(&), where E is a measure of the 
size of nonlinear terms in the equations (see appendix). Over much longer times, say 
N 1/(c262), tertiary wave interactions arising from cubic nonlinearities may become im- 
portant. However, if E < 1, the time scales are well separated and steady, implying steady 
on the time scale T, is a meaningful concept. 
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3. Multiple-triad interactions 
An exploration of the possible mode interactions shows that, for an arbitrarily 

chosen tank geometry, there are usually several triads which share the forced 

mode, satisfy the resonance condition C K+ = 0 and come close to satisfying 
3 

j=1 - 3 

i = l  
C wj = 0. Indeed, for certain specific geometries two or more such triads may 

be exactZy resonant. Examples will be given in the next section. For the present, 
we seek to establish whether, in the equilibrium state, the component waves of 
two triads sharing the forced wave may all exist at a finite level. The result may 
be generalized for greater numbers of simultaneously resonant triads. 

If a pair of triads is characterized by wavenumbers (K,, K,, K ~ )  and (K,, K ~ ,  K,), 
the interaction equations are 

(3.1) K2,daJdt = S,a,a, cos y + 8; a4a5 cosy* - T,a, + P cos (y - a,), 
K$ da,/dt = S,  a3 a, COB 7 - T, a2, 

ICE da3/dt = S,a,a, COB y - T3a3, 

~ ; d a , / d t  = S4a,a, cos 7* - T4a4, 

K: du,/dt = 8, a, a, COB q* - T, a5, 

(3.2) 

(3.3) 

(3.4) 

(3.5) 

K;al da,/dt = - S,a,a, sin 7 - #: a4a5 s h y *  + F sin (y  - a,), (3.6) 

K$a,da,/dt = -S,a,a,siny, (3.7) 

~ ; a ~ d a , / d t  = -S,a,a,sinq, (3.8) 

4 a 4  da,/dt = - S,a, al sin 7 *, (3.9) 

K:a5  da,/dt = - S, a1a4 sin 7*, (3.10) 

where q* = a, + ap + a,, 8: is the value of S, calculated from (2.7) with r and s 
assuming different values selected from the integers 1, 4 and 5, and wave 1 is 
presumed to have the highest frequency. 

If y is a constant, these equations admit the following steady-state solutions: 

(3.11) I a, = FIT,, 
a,, = a3, = a4, = a,, = 0, 

a,, = y with a,. . .a5, undefined; 

(3.12) 

a4, = a,, = 0, 

a,, = Y, a z s  = qn-y-a,, 
a,, arbitrary, a4,, a,, undefined; 
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I a2s = a3s = 0, 

(3.13) 

I als = y ,  

a4s = qn - y - agS, 

azs, a3s undefined, 

arbitrary, 

q = 0 or 1 according as ST 2 0. 

As in the previous section, it can be shown that solutions (3.12) and (3.13) 
are possible only if FIT, exceeds the corresponding critical amplitudes a, and a,* 
respectively. Thus, if an equilibrium state is attained, only one triad may persist 
at  a finite level. We shall show that the preferred triad is the one with the smallest 
critical amplitude. 

4. Stability of equilibrium states 
The substitutions a, = ans + r,, a, = an, + T , + ~  translate the equilibrium solu- 

tion to the origin in q co-ordinates. The differential equations then take the form 

K:dri/dt  = ktijrj+o(lYj12), ( 4 . l a )  

where i = 1, ... 
(4 . lb)  

and 

(Bii) = ( - 1) l -q  

'1a2sa3s+sTa4sa5s+ ( -  S l a Z 8 a ~  ' la2sa3s 'Ta48a5s 'Ta4sa5s 

' 2  "1s s 2 a 3 ~ a I ~  'Za3sals ' 0 

s3a1saZs '3 "2s s3 als a2s 0 0 

' 4  ' 1 s  0 0 f l 4  a5sals 8 4  s 

x [  S5aIsa4s 0 0 '5 alsa4s '5 alsa4s 

Equations (4.la) and (4.1b) may be regarded as a single set of ten coupled 
equations in the ten-dimensional phase space (q], with the first five governing 
perturbations to the amplitudes of the waves and the rest perturbations to the 
phases, in the neighbourhood of the equilibrium state. If the perturbations are 
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small, so that terms of O(lq1') can be neglected, the two sets decouple and can 
be studied separately in the appropriate subspace of {q}. 

The linearized version of (4.1) has solutions of the form 

7 .  = c.$, z z  

where h is an eigenvalue of the matrix (Aij ) .  If none of the eigenvalues has a 
positive real part, then all perturbations in amplitude are stable; otherwise they 
are unstable. 

Consider first the steady solution (3.11). The characteristic equation for (A, )  
is then 

(c + A)  [(T' + A) (T3 + A )  - S2S3P2/TT] [( T4 + A)  (q + A)  - S 4  S5P2/Tf] = 0 

and it readily follows that all the roots h have negative real parts if and only if 
PIT, < min (a,, a:). Moreover, since .a5s are zero, a&. . .a5s are undefined and 
the linearized form of (4.1 b )  reduces to a single equation: 

K ? a l s  = - '76, 

whence 76 cc exp ( -Ft /K?als)  

and perturbations to the phase alS are stable. Hence, the equilibrium solution (3.11) 
i s  unstable if PIT, exceeds the smallest critical amplitude; otherwise it is stable. 

For the steady solution (3.i2), the characteristic equation for the eigenvalues 
h of (Aij) is 

= 0. (4.2) 

After substituting for als, a2, and a3s from (3.12), we see that the cubic factor of 
the above determinant is 

h3+(T1+T2+T3)h2+(T2+T3)FA/ac+T T --T = 0, 
3(: 1) 

and it is evident that all roots have negative real parts if FIT, > a,. The quad- 
ratic factor is 

(Td+h) (T5+h)-SqS5a; = 0, 

which has roots with negative real parts if and only if a," < T4T5/S4S5, i.e. if 
a, < u,*. 

and a5, are undefined and the linear system 
(4.1 b )  comprises three equations for q6, r7 and qs. The eigenvalues for this system 
satisfy the cubic equation 

(4.3) 

Since a& and a5s are both zero, 

h(h2 - h(P + Q - P) - F Q )  = 0, 

where P = ( -  l)1~S1a2sa3,and Q = ( -  1)1-~a,s(S,a,s+S3a,). Thisequationhas 
roots h = 0, 2h = P + Q - F & [ ( P + Q - F ) 3 + 4 Q F ] ~ ,  

38-2 
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sgn (QF) = ( - 1)l-q sgn (8,) = - 1 

P-F = ( - i )1~Xla2su~--F = -Tlal, < 0. 

There is a neutrally stable eigensolution corresponding to the eigenvalue h = 0 
and this reflects the degree of arbitrariness between a,, and a&. As the other 
eigensolutions both decay, no unstable growth of the phase perturbations can 
occur although a finite jump in a,, and a3s, keeping + ass + y = qr, is theoretic- 
ally possible. 

We conclude, therefore, that, of the two possible equizibri~m solutions (3.12) 
and (3.13), the one which is stable to small disturbances when FIT, > max (ac, a:) 
is  the one with the Zowest critical amplitude and the other is unstable. 

This result may be extended to cover the situation where, say, k resonant 
triads are simultaneously present. Theoretical limit states and an a,, for each 
additional triad may be defined, but the appropriate additions to the determinant 
(4.2) only result in the inclusion of quadratic factors 

and if B’ > Fluls, 

(T2, + A) (F2k+l +A) - fJ2*42k+l)aL 

in the quadratic factor (4.3). Each quadratic independently has roots with 
negative real parts only if a, is less than the corresponding ac,. 

5. Some numerical calculations 
5.1. Parameter definition 

The foregoing analysis may be related directly to the experiments reported in I 
and to the present experiments, by substitution of calculated values for the 
controlling parameters. The interaction coefficient Xi has been defined in (2.7); 
provided that the container wall boundary layers remain laminar, the dissipation 
coefficients T, are as given in I, viz. 

1 = % [(~(mn+n2)i+-mjnj+2n~ L (2Rj)4+H2(m2+n2)5 , (5.1) 
2H 

where the quantities within the square brackets are boundary-layer and internal- 
dissipation terms respectively; Rj is a dissipation parameter or ‘ Stokes number ’ 
defined as wjH2/v (v = kinematic viscosity); the container has length L, breadth 
B (normal to the plane of motion) and depth H .  The quantities mi and ni are 
related to the horizontal and vertical modal numbers Nj and 3. of the waves by 

mi = Min/L, nj = A$.r[L. (5.2) 

Further reference to waves is made in terms of their modal number ratio, e.g. 
M21iV2 = 613. 

The forcing constant F is defined by the angular displacement A sin (ult + y )  
of the fixed wave maker (described in $6.1),  and the phase 8 of the forcing is 
equal to the phase difference (y  - a,) between the forced wave ( j  = 1) and the 
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Forced Triad partners &, x l o3  at 
mode I ( o , + W 3 ) / o l l  R, = 105 

0.991 - 
0.991 - 

4/10 519 

5/12 6/11 0.998 - 
6/13 7/14 0.998 - 
6/14 7/13 1.003 - 
7/15 8/16 1-003 - 
8/15 7/16 1-007 - 

5/11 6/12 
111 

M 
etc. 

1.001 32.07 
1.000 13-92 
0.994 25.55 

9/12 11/11 1.000 58.92 
10112 12/13 1.005 28.45 

113 312 
515 

11/12 
314 
9/11 

112 211 
515 816 
616 917 

16/13 1.005 - 718 

13/13 16/12 1.010 - 
14/13 17/14 0.996 - 
14/14 17/13 1.000 - 
15/15 18/14 0.992 - 
415 

16/11 0.994 - 818 
12/10 
12/11 16/10 1.000 - 

0.999t 4.33 
313 

1519 0.997 4.53 
717 

l o p  

13/10 18/11 1-004 5-59 
13/11 18/10 1.009 - 

1.008 - 
1.009 - 
0.992 - 
1.010 - 
0,992 - 916 

1017 
617 

13/12 

1.002 - 
1.001 - 814 

111 412 
814 

1217 

o.999t 3-46 
o.999t 2.94 

1216 

1019 1518 1.006 5.24 

t These triads are simultaneously in exact resonance at  L = 3.0948. 

TABLE 1. Lowest triads within 1 yo of resonance frequency: L = 3.10H 

wave maker. In  ideal conditions, 0 = 0 although in the experiments it was liable 
to drift over a small range of angles about in- (0 6.1). From I, with # = 6' + &i-, 

(5.3) P = 4 4  A sin q51n-2M, iVl . 

tion being $i = ajsinrnjxsinnjzcos(wit+ai), (5.4) 

Qi = ai/wj H 2 ,  (5 .5)  

With the above definitions, a is in units of stream function $, the field descrip- 

where x and z are length and depth co-ordinates measured from the fixed wave 
maker. The non-dimensional form of ai, 

is preferred in the presentation of the results. 
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5.2 .  Examples of interacting triad groups 

As was mentioned earlier, the nearly resonant triads sharing the forced wave 
may be numerous for particular geometries. Table 1 lists as a pertinent example 
the lowest triads whose values of 1 (w2 + w3)  1 differ from w1 by less than 1 yo, when 
L/H = 3.10. For some of these the critical amplitude Q, = a,..w, H2, with R, = lo5, 
is also given. It is notable that the critical amplitudes do not increase rapidly 
with unstable modal number. In  one tabulated case, three triads sharing the 
511 forced mode may be simultaneously in exact resonance. Sample calculations 
were performed on this case. 

5.3. Unstable double-triad interaction without phase variation 

In this first example, the interaction equations (3.1)-(3.5) were numerically 
integrated with the initial conditions and predicted limit amplitudes (in units 
of Q )  as listed in table 2. 

Modei MIN Q ( t  = 0) Q ( t  --f a) 01 ( t  = 0) F/T,a, 
4.195 x 

O 1. 3.54 
s x 10-5 
8 x 10-5 1.832 x 10-3 0 

0 0 0 

2 313 

1 511 0 2.939 x 10-3 0 
4 111 

3 814 

5 412 

3.11 
1 x 10-2 0 0 1  

TABLE 2 

The tank length is simultaneously resonant for both the (Sfl, 3/3, 8/4) and 
(5/1, 111, 412) triads, at 3.094238. Dissipations were chosen to be appropriate 
to R, = lo5. The initial amplitudes were chosen both to be relevant to experi- 
ments and to illustrate the predictions of $4;  the triad (5/1, 3/3, 8/4), though 
initially weaker, possesses a lower critical amplitude (and hence, higher FIT, a,, 
see table 2) than the other triad and ultimately acquires the excess energy 
supplied to the forced mode. 

The initial phases are all zero, and y is taken to be zero, so that the phase 
equations (3.6)-(3.10) are superfluous in this example. 

Figure 1 presents the integration to 2000 cycles of the forced mode. Up to 
time (a)  mode 4 is energized by the interaction of modes 5 and 1. These settle 
toward equilibrium values (b ) ,  but meanwhile modes 2 and 3 have gradually 
grown and gradually de-energize mode 1 (region (c)) towards its lower critical 
level. Modes 4 and 5 can no longer be sustained and gradually decay altogether, 
while modes 1, 2 and 3 approach their steady terminal values a t  (d). The con- 
ditions in this calculation are realistic for an experiment, and it can be seen that 
the time scales for attainment of limit states are long, of order lo3 cycles of 
main mode forcing. Other integrations show that the time scales depend only 
weakly on the initial amplitudes chosen. 
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Initial amplitude of mode 5 

2.0 

a” 

d 

. 
B 
v 

\ 

0.’ 

1 .o 

n 
1 10 I00 

Forcing cycles 

FIGURE 1. Evolution of a resonant interaction with two unstable triads initially present. 
Amplitudes are presented as fractions of their limit-state values. Initial conditions are 
given in table 2. The triad (511, 3/3, 8/4) possesses a lower critical amplitude than the 
triad (511, 111, 4/2). 

a ( t  = 0) a (t --f co) 
Mode i M / N  (rad) Q ( t  = 0 )  P/T,a, Q ( t  + 4 (rad) 

1 511 1 0 3.539 2.939 x 0 
2 3/3 4.. 10-3 3.539 4.195 x lop3 + 0.530 
3 8/4 0 10-3 3.539 1.832 x - 0.530 

TABLE 3 

5.4. Unstable single-triad interaction with phase variation 
As a second example, the interaction equations (2.1)-(2.6) were solved for the 
same tank geometry and R, as in § 5.3 but with initial phases defined, and y = 0. 
Conditions are given in table 3. 

Solutions are shown in figure 2. The phase of each mode settles rapidly to its 
limit state with very little overshoot. Oscillation of the amplitudes about the 
final limit amplitude is protracted over a period ten times as long, about 500 cycles. 
Most of the phase adjustment occurs before rapid energization of the unstable 
modes has commenced. 

5.5. Relation to previous experiments 
The experiments of I were directed mainly towards confirming the occurrence 
of resonant interaction and in verifying the value of a, for a single triad. The 
observations summarized in table 1 of I do in addition offer partial confirmation 
of the present predictions. In each case except the first ( l / I  mode forcing), the 
most commonly detected mode has the lowest a,. The reason for the appearance 
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Forcing cycles 

FIGURE 2. Evolution of a single-triad interaction with initial phases prescribed. Conditions 
are given in table 3. (a) Forced 5/1 mode, (b)  3/3 mode, (c) 8/4 mode, (d) ml, (e) aZ, ( f )  as. 
The tank length is 3.094H and forcing is at 3-539 timas the critical rate. 

of different modes when forcing was strong may well have been that these, by 
virtue of initial transients, had higher initial amplitudes. Subsequent traumatic 
distortion of the density field would have obscured any subsequent transfer to 
the more unstable triads. 

6. Experiments 
The apparatus described in I was modified for the present study. Figure 3 is 

a simplified sketch of the arrangement. The transparent-sided rectangular tank 
1.83 m long, 0.228 m wide and 0.382 m deep was filled to a depth of 0-326 m with 
linearly stratified salt solution. A sheet of P.V.C. was laid on the surface to 
inhibit evaporation and present a nearly rigid boundary. Internal waves were 
forced within a confined part of the tank by two independently driven wave 
makers. The first, like that used previously, was a single plane paddle (a), 
pivoting about a fixed horizontal axis 16.3 ern above the bottom and parallel to 
the ends. This was oscillated through a small arc about its vertical mean position. 
The other, movable, wave maker (5) could be inserted a t  any preselected position 
in the length of the tank, and comprised a pair of plane paddles pivoting about 
their central horizontal axes, 8.15 and 24.45 em above the bottom and normal to 
the tank sides. The mean position of these paddles was a vertical plane, and they 
were linked together by pulleys so that, when the upper paddle was oscillated 
through a small arc, the lower one also moved to produce a deformation of the 
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FIGURE 3. Experimental arrangement (diagrammatic). 

liquid boundary closely approximating a full wavelength of a triangular wave 
form. Both wave makers were sealed round their edges with felt, and a sheet of 
rubber glued to the face of the second one presented a smooth leak-free joint 
between the two paddles. Each wavemaker was driven from a crank by its own 
electronically controlled d.c. motor. 

The amplitude of forced waves was derived from speed measurements made 
at  one point in the liquid using a thermistor probe (c) (described in I) connected 
in a ‘constant-temperature’ bridge circuit. Coupled with this was a device for 
measuring the phase of speed minima relative to the forcing oscillations. Speed 
and phase were recorded against time. 

The thermistor probe, while being a sensitive and accurate means of measuring 
speeds as low as 1 mm/s, had a time constant (due to encapsulation in a 0.2 mm 
glass bead and electrically insulating lacquer) of about 1 s. To avoid measurement 
error it was necessary to calibrate the probe, after each experiment, by oscillating 
it through measured amounts in a manner closely reproducing the motion field 
experienced during the previous experiment. TO do this would have been im- 
possible if the motion field had contained numerous components of different 
frequency, and a complicated and expensive procedure of linearization compensa- 
tion and Fourier analysis would have been required for measurement of com- 
ponent wave amplitudes. 

Fortunately, a far simpler procedure could be used to give quantitative 
verification of the analysis of 3 2 in the present experiments. The triad (3/1, 2/1, 
1/2) was selected for its simplicity, and the large scale of its modes. The resonance 
L/H ratio was 3.208, satisfying (A 7) ,  and the movable wave maker was set to 
confine this geometry. The probe was located a t  (&L, *B, AH). This is a nodal 
position of horizontal velocity for the 2/1 (and other even) modes, but an antinode 
for the 311 and 1/2 modes, which could be forced by the fixed and movabIe 
wave makers respectively. 

Because of the scale of these latter modes, it  was expected that, for the moderate 
wave amplitudes used, the motion a t  the probe contained only two dominant 
collinear horizontal components of different frequency. Reproduction of this 
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motion was accomplished by disconnecting the wave makers and using their 
cranks to drive a mechanical linkage which combined two reciprocating com- 
ponents of frequencies w1 and w2 (equal to those of the experiment) and amplitudes 
p1 and /I2 into a horizontal displacement of the probe. The amplitudes could be 
varied to give a modulated trace on the recorder, resembling part of those 
obtained during an experiment. Calibration was achieved by using a measure- 
ment of the maximum and minimum levels of the upper envelope of the thermistor 
record, representing [ w,p,+ w2p2(  and (wlpl- w2p2(  respectively. Provided that 
Ip2w21 was less than 80 % of Iplwll (with w1 > w z ) ,  the modulation range could 
be measured and calibrations reproduced to within _+ 3 yo. Graphical interpola- 
tion was used to derive the modal amplitudes (figures 4 and 5) from experimental 
records such as figure 6 ( a )  (plate 1). Spot checks by shadowgraph of particle 
displacements during experiments confirmed the accuracy to better than 5 yo. 

The presence of additional modes is revealed by the appearance of multiple 
modulations on the recorder trace. While these were sought for multiple inter- 
actions (see $6.3  below), no quantitative measurements were made from such 
records. 

6.1. Limit-state experiments 

For these experiments the fixed paddle amplitude was preset and the 311 mode 
was forced continuously at resonance. Since a limit state is attainable only when 
ly-a,l = 0 (see equation (2.8)), this phase difference was monitored and 
minimized during a test by continual minute adjustments to the forcing fre- 
quency. In  relation to the theory this was equivalent to minimizing the time 
dependency of y. Variations in y and compensations occurred in time scales 
short compared with evolutionary time scales, but as far as possible long-scale 
variations were averaged out. The 211 and 112 unstable modes were allowed to 
grow either spontaneously or with the help of a cycle or so of forcing by the 
movable wave maker. Only on such occasions was this wave maker used; for 
the remaining time it was stationary a t  its mean vertical position. 

Forcing was sustained a t  a constant level until the thermistor output appeared 
to have stabilized, giving constant levels of maxima and minima in the speed 
record. In  some cases this state was attained only after many hundreds of forcing 
cycles (q.v. figure 1). Accuracy was limited by the difficulty in sustaining a 
constant phase for so long a period, and the necessity of subjectively judging 
when the limit state had been reached. 

Figure 4 summarizes the results. The wave amplitudes a1 and a3 and the forcing 
function P have been normalized by the factors 

respectively. Each symbol refers to results obtained with a particular filling of 
the tank (and hence, a specific value of the dissipation parameter RJ. 

The experimentally determined values of a,, and a3, agree with the form pre- 
dicted by (2.9) quite closely. With supercritical forcing a,, generally exceeded 
the predicted ac by afew per cent. This was matched by an apparent underestimate 
in the value of Flc, though the subsequent growth in a3, with F was well followed. 
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0 0.5 1.0 1.5 1.0 2.5 

FIGURE 4. Theoretical and experimental limit states compared. (3/1, 2/1, 1/2) triad inter- 
action. (a) Theoretical subcritical 311 mode. (b)  Supercritical unstable 311 mode. (c) Super- 
critical limit-state 311 mode. (d )  Supercritical 1/2 mode. Experiments : round symbols 
refer to the 311 forced mode, square symbols t o  the 1/2 free mode. b, R, = 6 . 1 0 ~  lo4; 
0,  7.23 x lo4; d, 1-01 x lo6; 6, 1-02 x lo6, 0, 1-08 x lo5; n, 1.08 x lo5 before instability. 

Fly1 a, 

In  one series, marked by filled symbols, conditions were sustained for excep- 
tionally long periods, and these pains are reflected in the quality of the results. 
However, slight discrepancies remain, tending to suggest that a small proportion 
of the energy extracted from a, by interaction was not finding its way to a2 and a3, 
although the theoretical estimates of interaction and dissipation were accurate. 

6.2. Measurement of an unstable interaction 

To test experimentally the amplitude growth equations (2.1)-( 2.3) initial 
amplitudes of each participating mode need to be defined. This was accomplished 
by oscillating the movable wave maker at  the resonant frequency of the 112 mode 
until it  had stabilized at  a measurable level. Then, simultaneously, this wave 
maker was disengaged and the fixed wave maker engaged a t  the (present) 311 
mode resonant frequency. The 2/1 mode was initially absent, but grew im- 
mediately through interaction between the 311 and 112 modes, and its phase 
was predetermined by that of the 112 mode. 

Several such tests were performed, and results of one are compared with the 
computed evolutionary cycle in figure 5.  The computations included both 
amplitude and phase equations with the measured phase difference (y  - a,) as 
a function oft as an input variable, as well as the values ofal, a2 and a3 at t = 0. 
Observed values of Q1 tend to be higher than those predicted and Q3 lower as 
the limit state is reached. This is consistent with the limit-state experiments. 
Agreement is considered to be remarkably good, however, in view of the dif- 
ficulties experienced in accurately calibrating the highly modulated thermistor 
probe signal (figure 6 (a) ,  plate 1). Computations performed without the phase 
equations (2.4)-( 2.6) gave an almost identical amplitude evolution, indicating 
insensitivity to the weak phase variations experienced. 
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FIGURE 5. Evolution of an unstable interaction. Lines are solutions of equations (2.6) : (a)  
311 mode, (b) 211 mode, (c) 1/2mode. Experiment: 0 ,3 / l  mode; 0,112 mode; A, 3 / 1  mode 
phase relative to paddle (y-01~).  For the experiment, F/T,a, 2: 1.39; R, = 7.23 x lo5. 

6.3. Spontaneous selection of the most unstable triad 

It was indeed fortunate that the 211 and 511 mode triads listed in table 1 were 
discovered, for these provided a means of verifying the predictions of Q 4. For 
both modes (when L is 3*10H), the critical amplitude for the triad containing 
as another partner a free mode with N = 2 happens to be greater than for one 
of the other triads. By initial forcing of the 312 free mode at  the appropriate 
frequency using the movable wave maker, initial instability of the interacting 
triads (211, 113, 3/2)*t could be predisposed. The test of the theory was 
whether the triad (211, 314, 515) would appear spontaneously and dominate the 
(211, 113, 312) interaction. 

Figure 6 (b )  (plate 1) is a copy of the thermistor bridge record for a forced 211 
mode superimposed upon a previously forced 312 mode. The probe was located 
a t  a position (0.555L, iB ,  S H ) .  The 312 forcing was ceased at  moment A on 
figure 6 ( b )  and supercritical forcing (P/a,T, = 2.56, S / a ~ T ,  = 1.12) of the 211 
mode was commenced at B. The beating period of the 312 mode with the 211 
mode is 5.06 cycles, which shows plainly on the record. After about 90 cycles, 
however, there is a detectable change in the modulation, another component of 
period 2-32 cycles appearing, then growing rapidly. After some time the strong 
persistent modulation has as its most recognizable components one with this 
period, and one of period 7.7 cycles. These periods correspond closely with 
the 211 mode, 3/4 mode beating period (2.31 cycleslcycle) and the 211 mode! 

7 An asterisk denotes the triad with the higher critical amplitude a,*. 
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(5/5-3/4) mode period [0.542/(0.307 - 0-235) = 7.55 cycles/cycle]. The 5.06 period 
may still have been present, but it could not be distinguished. 

A more rigorous test can be similarly applied in the case of the (5/1, 1/1, 4/2)* 
and (5/1,3/3,8/4) triads, whose critical amplitudes are much closer to one another 
than are those of the 2/l  triads. The experiment is more difficult, however, 
because (i) frequencies of the free modes of each are identical and (ii) there are 
no 111 nodal points at which the probe may be located to detect the growing 
3/3 mode. 

After the 4/2 mode had been forced, a supercritical forcing of the 5/1 mode 
(F/acTl 2: 4-1, F/a,* TI N 3.5) was applied. Figure 6 (c)  (plate 1) shows the 
thermistor record. The observed initial modulation is compounded from the 
beating of the 511 and 4/2 modes (2.77 cycles/cycle) and the 5/1 mode, (4/2 - 1/1) 
mode beating period (3.62 cycles/cycle). The same modulation persisted over 
the whole experiment (1200 cycles of forcing). Primary de-energization of the 
forced mode by 111 mode, 4/2 mode interaction is shown by the decrease in 
amplitude after time (ii) on figure 6 (c) ,  and 8/4 modes, revealed by shadowgraphs 
and dyed layers in the liquid, were visibly present after time (iii), though over 
the duration of the record shown in the figure, the 4/2 mode had not entirely 
vanished. Figure 7 ( a )  (plate 2) shows the shadowgraph a t  time (i), before the 
511 mode was forced, and figure 7 (b)  (plate 2) was taken after 430 cycles. 

Though the initial conditions were not exactly matched, this experiment 
showed all the major features of the numerical calculation presented in figure I .  

7. Conclusion 
It has been shown here that for a linearly damped, resonantly interacting 

triad of waves, the highest frequency member of which is continuously forced, 
a stable limit state may be attained if the forcing is exactly in phase. The state 
is then as follows. 

(i) The forced wave settles to a critical amplitude defined only by the damping 
coefficients of the other two waves, and by the coefficients of interaction of 
these waves with the forced wave. 

(ii) If the forcing rate exceeds that required for this amplitude to be attained, 
all the excess power is used to energize the other two waves, each of which also 
attains a similarly defined limit state. 

(iii) In  the context of internal waves, the possible interacting triads may be 
numerous. If two or more triads are simultaneously close to satisfying resonance 
conditions, the stable limit state is one in which the forced wave falls to the 
lowest critical amplitude defined for the triads present. Before attaining this 
state, members of each triad continue to grow only so long as the forced wave 
amplitude exceeds the critical amplitude for that triad. 

(iv) Regardless of the initial magnitudes of all waves present, the only ones 
remaining in the limit state are members of the triad with the lowest critical 
amplitude. 

There exists in addition an unstable limit state in which only the forced mode 
is present; this requires all other members of possible resonant triads to be 
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completely absent. The possibility that there exist, in addition, stable limit 
cycles of energy exchange between triad partners has not been eliminated, but 
none were identifiable from numerical integrations of the interaction equations. 
During evolution of an unstable interaction, the relative phases of the waves 
approach their limit values more rapidly than the amplitudes. A quasi-steady 
state is therefore possible if the phase of the forcing varies slowly in time. 

These results have been substantially confirmed by standing-wave experiments, 
and have some generality. In  less well controlled situations, however, modifica- 
tions may be required. For example, the triad partners of a forced wave may 
themselves be members of other resonant triads, and energy may cascade to 
these triads. (Tascades of this type will always be towards lower frequencies. 
If the waves become large enough, forced interactions between them will become 
sources of shorter wavelength disturbance to the medium. This is felt to be one 
cause of the ‘traumata ’ described in I. 

For conditions of the present experiments resonant geometries are dense 
(q.v. table I) and the comparative insensitivity of the resonant frequency sum 
(equation (A 7))  to L/H suggests that resonance is arbitrarily close with any 
forced mode. However, there is room for further work on the behaviour of 
damped interacting systems when detuned from resonance. 

One of us (DWM.) gratefully acknowledges the support of a Monash Graduate 
Scholarship during the course of this work. 

Appendix. Derivation of the interaction equations 
The Boussinesq equations for motions of a stratified liquid are 

v . u  = 0, (A 1) 

(A 2) 

(A 3) 

a 1  

at Po 
- U  + - Vp - V P  = - U  .VU+ VV’U + F, 

a+t + Q ~ U .  P = - u . VV, 

where u, p ,  v = g(po-p)/po, p and po are the velocity, pressure, buoyancy 
acceleration, density and undisturbed density respectively, Q2 = - gpo1dp0/dz 
is the square of the Brunt-Vaisala frequency of the liquid (assumed here to be 
constant), 4 is a unit vector in the vertical (2) direction, F is a body force and 
Y is the coefficient of viscosity. The diffusion of density (i.e. buoyancy) in (A 3) 
is neglected; this conforms with the conditions of the experiments as the dif- 
fusivity of salt in water is small compared with that of momentum. 

In two-dimensional motion, the velocity may be expressed in terms of a stream 
function $ such that u = ($a, 0, - llr,) and curl u = (0, + V2@, 0). Rectangular 
co-ordinates are assumed with P = (0 ,  0 , l )  vertical. With the scaling 

t = Q-lt’, 9 = A*H*$‘, x = Hx’, CT = (A*H$Q) CT’, F = RF’, 

the equation a[curl (A 2) ] /a t  + a(A 3) /ax  takes the form, dropping primes, 
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where R = Q2H/u, and E = A*H*/Q2 is a measure of the nonlinear, viscous and 
forcing terms assuming that RE N 1. 

The boundary conditions consistent with a rectangular closed tank are? 

$ , = O  at z = 0 , 1 ,  

@a = 0 a t  x = 0, LIH. 

If e < 1, assume that 9 = @o+e@l-t- ... and u = cr0+eul+ ... . Clearly +o 
satisfies 9[90] = 0, and solutions satisfying the boundary conditions (A 5) have 
the form $o = a sin mx sinnz cos (wt + a) ,  where a and a are constants, m = Mzr/L, 
n = Nzr/H, where M and N integers, and w2 = M2/(M2 +N2L2/H2). 

If three waves exist, 
3 

@ O - - j = 1  ajsinmjxsinnjzcos(wjt+aj), (A 6) 

(A 7 )  Cm. = 2%. = COJ. = 0 

and the wave with j = 1 is forced at a resonance of the container, then substitu- 
tion of (A 6) into the equation for $, gives rise to secular terms. These may be 
removed by assuming aj  and aj to be functions of the 'slow' time variable T = Et 
and subsequently treating T and t as independent.$ The operator a/2t becomes 
slat + &/aT and @, satisfies 

and if 3 3 3 

a 1 a90 a a$ a + - Wo, v291- aT at at 2[9,] = - 2 - v2 J r@O,  uO1 - Rs v47& 

+ F* sin m, x sin n, z sin {w, 1: + y (T)} ,  (A 8) 

where 
Hw4(m2 +n2) uN( - 1 ) N n  

e2Qe m3L 
F* = c 

N 

The conditions for no secular terms to occur in (A 8) determine a j (T )  and olj(T). 
I n  dimensional terms, these are precisely equations (2.1)-(2.6). Q 

t The introduction of forcing through the boundary conditions in I is replaced here 
by a body force 

a~ n 2 d  
m3L!x 

F = X(-l)M- cos wt(n sin mx cos nz, 0, - m cos mx sin nz), 

where aN = 0 for N even and - 4AoH/(n2N2) for N odd, which is formally equivalent. 
$ This is the method of two-timing; see, for example, Cole (1968, chap. 3). 
fj These equations should be compared with the corresponding equations (B 14) of 

Martin, Simmons & Wunsch (1972), which apply to unforced and undamped progressive 
waves. McIntyre (private communication) has pointed out that space differentiations on 
the right-hand side of their equation (B 5) can introduce phase shifts of 90" for progressive 
waves but not for standing waves and that this fact explains the reversed positions of 
cos q and sin 7 between our theory and theirs. 
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FIGURE 6. Recorder traces from thermistor bridge, showing modulation by interacting 
free modes. (a)  Record providing results given in figure 4. Initial imposed 1/2 wave was 
discontirniod at A, when forcing of 311 mode was commenced. ( b )  Spontaneous growth of 
3/4, 5 / 5  inodes upon a previously imposed (211, 1/3, 3/2) triad interaction. (c )  Spontanoous 
growth of the 3/3 and 8/4 modes upon a previously imposed (511, t/1,4/2) triad iritcract,itm. 
See also figures 1 and 7. 
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